

(EN CONSULTATION): Ligne directrice pour la recommandation de l'utilisation de semences de maïs et de soya enrobées d'insecticides

Adoptée par le conseil d'administration le 16 mai 2024

Version pour consultation générale

Coordination du projet :

Charles Fournier-Marcotte, agronome et consultant

Raphaëlle Gendron, agronome, conseillère en pratique professionnelle, Ordre des agronomes du Québec

Équipe principale de rédaction :

Annie Desrosiers, agronome et conseillère agronomique, Corteva et Pioneer

Brigitte Duval, agronome et conseillère en phytoprotection, ministère de l'Agriculture, des Pêcheries et de l'Alimentation (MAPAQ)

Gabriel Bourgeois, agronome et conseiller en agroenvironnement, Gestrie-Sol

Jacques Fadous, agronome, direction des matières dangereuses et des pesticides, ministère de l'Environnement, de la Lutte contre les changements climatiques, de la Faune et des Parcs (MELCCFP)

Julien Saguez, Ph. D., biologiste-entomologiste, chercheur en biosurveillance, CÉROM

Réviseurs:

Marie-Edith Cuerrier, agronome, M. Sc., conseillère en gestion intégrée des ennemis des grandes cultures, direction de la phytoprotection, MAPAQ

Sébastien Boquel, Ph. D., chercheur en entomologie, CÉROM

Yvan Faucher, agronome et conseiller en grandes cultures, MAPAQ, Montérégie-Est

Merci également aux relecteurs et relectrices externes :

Salah Zoghlami, agronome et conseiller aux affaires agronomiques, Les Producteurs de grains du Québec

Julie Breault, agronome et conseillère en grandes cultures, MAPAQ, Montréal-Laval-Lanaudière

Geneviève Labrie, Ph. D., biologiste-entomologiste, chercheuse

Stéphanie Mathieu, agronome et conseillère en grandes cultures, MAPAQ, Montérégie-Ouest

Table des matières

Ta	ıble des	matiè	res	3			
1	Glos	saire.		5			
2	Mise	en co	ontexte	6			
	2.1	Utilis	ation des semences enrobées d'insecticides dans le maïs et le soy	/a au			
	Québec	c		8			
	2.2	Obje	ctifs de la ligne directrice	8			
3	Fonc	ctionn	ement et limites des traitements de semences insecticides	9			
4	Rava	ageurs	des semis	10			
			ipaux ravageurs des semis : facteurs de risque, prévention et méth				
	4.1.1	l Ve	rs fil-de-fer (VFF)	10			
	4.1.2	2 Mc	ouche des semis	12			
	4.2 Ravageurs secondaires : facteurs de risque, prévention et méthodes de alternatives						
	4.2.1	I Ve	rs blancs	14			
	4.2.2	2 Ve	r-gris noir	15			
	4.2.3		rysomèles des racines du maïs				
		Réca	pitulatif des principaux facteurs de risque des ravageurs des semis ultures et de soya	de maïs			
5	Impa	acts d	es pertes de population dans le maïs et le soya	17			
6	Utilis	sation	des SEI	19			
	6.1	Élém	ents justificatifs	20			
	6.1.1	l Le:	s éléments justificatifs documentés sur l'entreprise	20			
	6.	1.1.1	Dépistage des VFF (pièges-appâts)	20			
	6.	1.1.2	Évaluation de la levée de la culture	20			
	6.	1.1.3	Autres observations	21			
	6.1.2	2 Au	tres éléments justificatifs transitoires	21			
	6.	1.2.1	Outil VFF QC				
	6.	1.2.2	Facteurs de risque				

6.1.2	.3 Indications de l'entreprise agricole	23
6.1.3 semis	Éléments justificatifs qui ne sont pas basés sur la gestion des ravageurs des 23	
6.1.3	.1 Recherche et transfert technologique	23
6.1.3	.2 Autres situations	24
6.2 Dé	émarche d'acquisition de connaissances	25
6.2.1	Acquisition de connaissances sur l'entreprise	25
6.2.2	Rétroaction et validité	26
Références b	pibliographiques	28
Annexe I - Im 31	pacts des pertes de population dans le soya et dans le maïs-grain et fourrage	r

1 Glossaire

Dans le présent ouvrage, les termes et abréviations ci-dessous sont définis comme suit :

- « Démarche d'acquisition de connaissances » : Démarche agronomique proposée par l'agronome lors de l'émission d'une justification agronomique afin d'obtenir des données concrètes sur les ravageurs des semis. Celle-ci comporte des objectifs chiffrés d'acquisition de connaissance (ex. : parcelles et nombre d'hectares ciblés par année).
- « Dépistage » : Le terme dépistage réfère dans la présente ligne directrice au dépistage par piège-appât. Il consiste à capturer des insectes à l'aide de pièges-appât afin de déterminer si un seuil économique d'intervention a été atteint. Ce terme est à ne pas confondre avec une évaluation des dommages causés à la culture par des ravageurs de semis.
- « Essaie côte à côte » : Expérimentation dans laquelle l'on compare la levée d'une semence traitée aux insecticides et d'une semence non traitée aux insecticides dans une même parcelle. Cette méthode permet d'évaluer l'efficacité des traitements de semences insecticides en comparant directement leur impact sur la germination et la croissance des plantes avec celles qui n'ont pas été traitées.
- « GIEC » : Gestion intégrée des ennemis de cultures. Approche visant à contrôler les organismes nuisibles en combinant différentes méthodes directes et indirectes telles que la lutte biologique, la lutte chimique, la rotation des cultures, la sélection de variétés résistantes et la modification des pratiques agricoles. L'objectif est de minimiser les dommages causés aux cultures tout en réduisant au minimum les impacts sur l'environnement et la santé humaine liés à l'utilisation des pesticides.
- « Justification agronomique » : Document expliquant la démarche agronomique, signé par l'agronome, qui est remis à l'agriculteur pour l'utilisation de certains pesticides. La justification agronomique fait ressortir les éléments, les références ainsi que les données agronomiques, techniques et économiques appuyant l'application des pesticides réglementés. Cette démarche s'appuie notamment sur des bases scientifiques et sur un diagnostic du problème phytosanitaire dans le respect des principes de la gestion intégrée des ennemis des cultures.
- « LEDP » : Laboratoire d'expertise et de diagnostic en phytoprotection. Entité faisant partie de la Direction de la phytoprotection du ministère de l'Agriculture, des Pêcheries et de l'Alimentation (MAPAQ). Offre des services de dépistage et d'identification des maladies, des ravageurs et d'autres facteurs nuisibles affectant les cultures agricoles.

- « Mouche des semis » : Également connue sous le nom scientifique de *Delia platura*. Insecte pondant ses œufs dans le sol, pouvant affecter les plantules et causer des dommages aux cultures.
- « Prescription agronomique » : Document réglementaire préparé par l'agronome qui permet à l'agriculteur (titulaire d'un certificat de sous-catégorie E1 ou E2 ou d'un permis de sous-catégorie D1) ou à l'entreprise forfaitaire (titulaire d'un permis de sous-catégorie C1 ou C8) d'acheter le pesticide visé. Sans la prescription agronomique, il est interdit au titulaire d'un permis de sous-catégorie B1, « Vente au détail des pesticides des classes 1 à 3A », de vendre ce pesticide. La prescription découle d'une recommandation et d'une justification agronomique.
- « Ravageurs des semis » : Réfère aux insectes qui attaquent les semences ou les jeunes plants, entraînant une diminution du rendement des cultures.
- «Recommandation agronomique »: Une recommandation agronomique est un conseil donné à l'entreprise agricole. Dans le présent document, elles concernent l'utilisation de pesticides, plus particulièrement, des enrobages de semences insecticides. L'élaboration d'une recommandation agronomique se fait selon différentes étapes détaillées à l'annexe 2 de la *Grille de référence de l'Ordre des agronomes du Québec sur l'élaboration d'un plan de phytoprotection ou d'une recommandation ponctuelle*. Le fait de recommander de ne pas utiliser un pesticide constitue également une recommandation, tout comme les recommandations de méthodes préventives et alternatives aux pesticides en font partie.
- « SEI »: Semences enrobées d'insecticides.
- « TSI » : Le terme traitement de semence insecticide est souvent utilisé pour désigner l'insecticide enrobant la semence.
- « VFF » : Vers fil-de-fer ou larve de taupin (famille des Élatérides) présent dans certains sols agricoles et pouvant affecter des cultures telles que le maïs.

2 Mise en contexte

Cette ligne directrice est une mise à jour du document intitulé *Grille de référence et ligne directrice concernant la recommandation sur l'utilisation des traitements de semences insecticides dans le maïs et le soya* publié en septembre 2020. Les modifications apportées visent à offrir une plus grande latitude au jugement des agronomes dans leurs recommandations de l'utilisation de semences enrobées d'insecticides pour le maïs (excepté le maïs sucré) et le soya. Elle a été élaborée afin de fournir les outils nécessaires pour les aider à prendre des décisions.

La nécessité de fournir des recommandations précises et éclairées concernant l'utilisation des semences enrobées d'insecticides (SEI) dans ces cultures est cruciale pour maximiser les rendements agricoles tout en minimisant les risques pour l'environnement et la santé humaine. Cette ligne directrice se concentre sur l'identification des éléments possibles de justification agronomique, en proposant des méthodes de suivi afin d'acquérir des connaissances sur les parcelles agricoles et d'améliorer la justesse des recommandations. Elle vise à renforcer les capacités des agronomes à prendre des décisions en respectant les principes de la gestion intégrée des ennemis des cultures.

La recommandation d'utiliser ou non des SEI constitue un acte agronomique, car il nécessite de réaliser un diagnostic et d'élaborer une recommandation en phytoprotection. Par conséquent, cette recommandation doit être justifiée et signée par un agronome et classée dans le dossier du client.

Un agronome doit suivre et respecter le présent document pour élaborer sa recommandation agronomique. L'élaboration de la justification et de la prescription agronomiques doit s'appuyer sur cette recommandation et être réalisée conformément aux exigences du *Code de gestion des pesticides*. Dans sa recommandation, l'agronome doit notamment identifier et évaluer le problème phytosanitaire, faire une analyse des interventions phytosanitaires possibles, puis expliquer la raison du choix d'un SEI, etc. Il doit ensuite émettre une prescription agronomique. Un modèle de justification et de prescription agronomiques est disponible pour les agronomes sur le site internet du gouvernement du Québec.

Les enrobages insecticides de semences sont des pesticides, donc leur utilisation doit être envisagée en dernier recours, en suivant les fondements de <u>la gestion intégrée</u> des ennemis des cultures (GIEC).

La recommandation de l'agronome doit être basée sur une analyse agronomique, en se servant du présent document et des éléments justificatifs présentés à la section 6.

Plusieurs institutions scientifiques établies ont réalisé des études, des revues de littérature, des guides d'identification, des fiches techniques et des outils d'aide à la décision concernant les ravageurs des semis en grandes cultures. Cette directive s'appuie sur plusieurs études, dont bon nombre ont été menées au Québec.

Note : La production du maïs dans le but d'en faire de l'ensilage ou d'en récolter le grain réfère davantage à des différences de techniques de récolte, de conservation ou de débouchés commerciaux ou alimentaires qu'à une différence de culture. Pour cette raison,

il est acceptable que l'agronome ne fasse pas de distinction pour ces deux cultures dans sa justification et sa prescription agronomiques. Cependant, le maïs sucré est une culture dont la régie diffère du maïs grain et maïs ensilage. La distinction est donc nécessaire dans l'élaboration de la justification agronomique.

2.1 Utilisation des semences enrobées d'insecticides dans le maïs et le soya au Québec

Au moment de rédiger cette ligne directrice, les SEI étaient majoritairement utilisés dans le maïs et en moindre proportion dans le soya.

Les interventions phytosanitaires évoluent constamment en fonction de la réglementation, des résultats des travaux de recherche et du transfert des connaissances en phytoprotection auprès des agronomes et des productrices et producteurs agricoles.

Des études scientifiques ont été menées au Québec par le Centre de recherche sur les grains (CÉROM) sur le principal ravageur des semis qu'est le ver fil-de-fer (VFF). Selon Saguez et coll. (2017), le « risque d'avoir des vers fil-de-fer en forte abondance dans un champ et des dommages associés à ces ravageurs dépendent d'une combinaison de facteurs agroenvironnementaux qui varient selon la région agricole ». Des essais comparatifs de semences traitées et non traitées avec des insecticides de semence ont démontré que « moins de 5 % des sites présentaient des populations de ravageurs suffisantes pour justifier l'utilisation de méthodes de lutte » (Labrie et coll., 2020). Ces essais ont été effectués de 2012 à 2016 dans 84 parcelles agricoles à travers 7 régions du Québec.

2.2 Objectifs de la ligne directrice

Le présent document vise à orienter les agronomes sur l'utilisation des SEI dans les cultures de maïs-grain, de maïs ensilage ainsi que de soya, le tout en conformité avec les exigences réglementaires en vigueur. Cette ligne directrice présente aussi plusieurs informations relatives aux TSI et aux ennemis des cultures qu'ils visent.

La <u>section 6</u> traite du contenu attendu dans le cadre d'une justification agronomique menant à l'utilisation de SEI, soit <u>les éléments justificatifs (6.1)</u> et <u>la démarche d'acquisition de connaissance (6.2)</u>.

3 Fonctionnement et limites des traitements de semences insecticides

Les insecticides utilisés pour traiter les semences de maïs et de soya sont des produits appliqués en enrobage des semences, en usine. Ces insecticides visent essentiellement les insectes qui s'attaquent aux semences et aux jeunes plantules. Plusieurs ravageurs vivant dans le sol ou en surface peuvent être ciblés, notamment les VFF et les mouches des semis, qui sont considérés comme les principaux ravageurs des cultures en début de saison.

Les insecticides utilisés comme TSI sont des produits systémiques, c'est-à-dire que lorsque la germination débute, une partie du produit, qui est très soluble dans l'eau, est absorbée par les racines de la plantule. Une partie de l'insecticide est ensuite distribuée dans toute la plantule, mais une partie importante du produit se perd dans l'environnement et dans le sol, n'ayant pu être absorbé par la plante.

Pour chaque produit, il est important de vérifier l'étiquette afin de connaître les ravageurs pour lesquelles il y a suppression ou répression. De plus, les étiquettes présentent les doses qui doivent être appliquées sur les semences pour lutter contre les ravageurs ciblés.

Les insecticides en enrobage de semences possèdent différents modes d'action. Par exemple, les néonicotinoïdes agissent au niveau du système nerveux central des insectes ciblés, alors que les diamides agissent sur leur système musculaire. Notons que les insecticides enrobant les semences ne tuent pas les VFF, mais agissent plutôt en les rendant temporairement immobiles sans nécessairement réduire leur population.

De façon générale, les insecticides en enrobage de semence ne tuent pas les ravageurs des semis, et plusieurs facteurs peuvent influencer leur efficacité.¹

La durée de l'efficacité des TSI est relativement courte, soit quelques semaines tout au plus après la mise en terre des semences traitées, selon différentes références et selon les produits. De plus, plusieurs facteurs peuvent influencer l'efficacité des TSI et la durée de celle-ci, tels que les conditions météorologiques suivant le semis (ex. : pluies abondantes, sécheresse, froid), la pression des VFF, les espèces de VFF présentes, etc. Donc, même dans un champ avec SEI, des dommages de ravageurs des semis peuvent être observés.

Les insecticides qui enrobent les semences sont hautement solubles dans l'eau. Une étude a démontré que pour la clothianidine, moins de 1,5 % du produit est absorbé par les

¹ Grewal et coll., 2001; Hummell et coll., 2009; Vernon et coll., 2008, 2009; van Herk et coll., 2007, 2008, 2018; Cherry et al. 2017

plantules de maïs (Alford et Krupke, 2017). Les études montrent que le reste du produit peut être perdu au moment du semis (ex. : perte de poussière par le système de ventilation du semoir ; Schaasfma et coll., 2016, 2017, 2018) et après le semis (ruissellement et lessivage dans le sol ; Chrétien et coll., 2017 ; Schaasfma et coll., 2015, 2019). Le réseau de suivi des pesticides dans l'eau du ministère de l'Environnement et de la Lutte contre les changements climatiques, de la Faune et des Parcs (MELCCFP) permet de documenter la présence et la concentration de plusieurs ingrédients actifs, dont certains utilisés pour le traitement des semences. Les résultats ponctuels sont présentés dans <u>l'Atlas de l'eau</u>. Ces suivis dans l'eau démontrent la présence des insecticides utilisés en enrobage des semences et certains d'entre eux dépassent les critères de protection de la vie aquatique chronique. Pour en savoir plus, il est possible de consulter les rapports disponibles sur <u>le site web du MELCCFP</u>.

4 Ravageurs des semis

4.1 Principaux ravageurs des semis : facteurs de risque, prévention et méthodes de lutte alternatives

Cette section présente les facteurs de risque favorisant la présence et l'abondance des principaux ravageurs des semis, soit les VFF et la mouche des semis. Elle présente aussi les moyens de prévention et les méthodes de lutte alternatives.

En bref, les principaux ravageurs des semis sont :

- pour la culture de maïs :
 - o le ver fil-de-fer,
 - o et la mouche des semis,
- pour la culture de soya :
 - o la mouche des semis.

4.1.1 Vers fil-de-fer (VFF)

Selon une étude réalisée de 2012 et 2016 dans 84 champs répartis dans 7 régions du Québec, moins de 5 % de ces champs de maïs présentaient des populations de VFF atteignant les seuils économiques d'intervention (Labrie et coll., 2020). Une étude sur les VFF dans les grandes cultures au Québec (Saguez et coll., 2017) a montré que l'espèce majoritaire est le taupin trapu, *Hypnoidus abbreviatus*, une espèce connue pour être peu dommageable. Le seuil économique d'intervention est de 3 VFF par piège par relevé lorsque le taupin trapu est le plus abondant dans un champ (Labrie et coll., 2017). Le seuil

est de 1 VFF par piège par relevé lorsque des espèces plus dommageables pour les cultures, telles que *Agriotes*, *Melanotus* et *Limonius*, sont majoritairement présentes dans un champ.

Facteurs de risque

Le facteur prédominant qui indique un risque de dommages à la culture sur une parcelle donnée est un **historique d'infestations.**

Toutefois, les études sur les VFF ont permis d'identifier d'autres facteurs déterminants, présentés ci-dessous. Ceux-ci ne sont pas présentés par ordre d'importance, car il n'est pas possible de le faire, du fait que selon les champs et selon les espèces de VFF, certains facteurs ont plus d'importance que d'autres.

L'évaluation du risque repose sur une combinaison des facteurs ci-dessous.

- Région agricole: Certaines régions du Québec peuvent présenter une plus forte abondance de VFF en raison du paysage, des types de rotation des cultures et des conditions climatiques.
- Type de sol: Les sols organiques et les sols minéraux de texture légère à moyenne peuvent abriter des populations de VFF plus importantes. Les risques sont très faibles dans les sols argileux.
- Taux de matière organique : Les champs avec un taux de matière organique relativement élevé sont plus à risque d'héberger des VFF, puisque ceux-ci peuvent s'en nourrir.
- Précédents culturaux: Le maïs sur retour de prairies de graminées (à surveiller pendant les deux années qui suivent la destruction de la prairie) ou sur retour de céréales ainsi que les champs en monoculture de maïs (plus de 3 ans en maïs continu) peuvent abriter une plus grande population de VFF. Les champs ayant eu des prairies de graminées durant les trois années précédentes ont une plus forte probabilité d'héberger des VFF. Selon les études, les champs en alternance maïssoya présentent généralement peu de VFF.

Prévention et méthodes de lutte alternatives

La rotation des cultures, notamment par le biais du gain en biodiversité et l'amélioration de la santé des sols, est un des moyens les plus efficaces de diminuer les populations de VFF dans un champ. Certaines cultures, telles que le soya, sont moins attractives. De plus, des

études montrent que la moutarde brune et le sarrasin peuvent être répulsifs et même létaux contre les VFF.

Le contrôle des mauvaises herbes, notamment les graminées, fait également partie des méthodes de prévention. Cela permet de réduire les populations de VFF, notamment en privant les jeunes larves de nourriture.

Réaliser le semis à la bonne profondeur et dans des conditions favorables à une levée rapide et uniforme contribue également à protéger la culture des dommages que pourraient causer les VFF présents dans le champ. Cela réduit le temps d'exposition des semences et des plantules à l'attaque par les VFF. Des températures modérées et un sol humide favorisent la présence des VFF près de la surface du sol.

D'autres facteurs peuvent aider à diminuer les populations de VFF. Les VFF sont en effet la proie de plusieurs ennemis naturels, parmi lesquels des carabes, des oiseaux, des petits rongeurs et des mammifères. Des champignons et des nématodes entomopathogènes ont aussi montré une efficacité non négligeable pour contrôler les VFF. Enfin, des pièges à phéromones peuvent être aussi installés dans les champs et dans les bordures pour capturer les adultes.

4.1.2 Mouche des semis

Les études portant sur la mouche des semis ont permis d'identifier les principaux facteurs de risque qui favorisent la présence et l'émergence de ce ravageur dans le maïs et le soya. L'appréciation du risque qu'un champ subisse une infestation par le ravageur repose sur une combinaison des facteurs suivants.

Facteurs de risque

- Amendements organiques: L'enfouissement de fumiers, lisiers, cultures de couverture ou toute autre matière végétale fraîche au printemps près de la date de semis, constitue un important facteur de risque, particulièrement le fumier de poulet (ce dernier appliqué deux semaines ou moins avant le semis; autres fumiers solides appliqués quelques jours avant le semis). En outre, les cultures de couverture ou autre matière végétale (ex.: mauvaises herbes abondantes) incorporées vivantes constituent un facteur de risque, contrairement à celles détruites chimiquement ou par le gel de l'hiver précédent.
- Travail de sol: Les champs fraîchement labourés, humides et riches en matière organique sont plus à risque que des champs sans travail de sol. Toutefois, les champs sans travail de sol où seuls des résidus de soya ou de maïs sont présents ne semblent pas problématiques.

- Sols avec résidus de culture abondants: Les champs avec de grandes quantités de végétaux en décomposition (autres que les pailles et les chaumes) peuvent favoriser l'infestation par la mouche des semis. L'incorporation des résidus de culture par le travail réduit du sol favorise la ponte du ravageur (Barlow, 1965; Gregory et Musick, 1976).
- Conditions défavorables à la levée: Les dates de semis précoces dans des conditions de température froides et humides ou encore des semis dans des sols lourds qui retiennent l'humidité ralentissent la germination et l'émergence des plantes. Ceci allonge la durée de la période à risque pendant laquelle la mouche des semis occasionne des dégâts à la culture. Ce ravageur a moins d'impact sur la culture une fois la levée terminée, notamment lorsque la plantule n'a plus besoin du grain pour se développer.
- Semis dans la période de pic d'activité de la mouche des semis : Les modèles prédictifs développés aux États-Unis et validés au Québec montrent que le pic d'émergence de la mouche des semis se situe en général dans la deuxième moitié du mois de mai. Un semis durant cette partie de mai, en présence des facteurs de risque listés plus haut, serait plus à risque de présenter des dommages par la mouche des semis.
- Régions : Certaines régions agricoles peuvent avoir des occurrences d'infestation des mouches des semis plus fréquentes.
- Historique d'infestations: Dans les champs ayant déjà subi des dommages importants de la mouche des semis, le risque d'infestations serait plus élevé uniquement lorsque les pratiques favorisant la présence de la mouche des semis sont toujours utilisées (selon les facteurs de risque mentionnés précédemment).

En l'absence des facteurs de risque mentionnés ci-dessus, les situations suivantes sont à faible risque pour la mouche des semis :

- Semis dans une prairie (ou autre végétation) détruite chimiquement ou par le gel hivernal;
- Soya en semis direct sur un précédent de maïs ;
- Rotation maïs-soya, sans engrais vert ni fumier appliqué au printemps.

Les risques ne sont actuellement pas connus pour les terres organiques et pour les applications de boues municipales.

Prévention et méthodes de lutte alternatives

En cas de dommages d'importance économique liés à la présence du ravageur, des ajustements peuvent être mis en place à titre préventif pour la prochaine saison de culture afin de diminuer l'incidence du ravageur.

- Amendements organiques: L'enfouissement de matières organiques (fumiers, lisiers, cultures de couverture ou toute autre matière végétale fraîche) devrait être fait le plus longtemps à l'avance (à l'automne ou deux à trois semaines avant le semis).
- Bonnes conditions de semis favorisant une levée rapide: Le semis effectué dans des conditions qui favorisent une germination rapide (préparation du lit de semences, profondeur de semis adaptée à la culture, température et humidité du sol, etc.) est primordial.
- Date de semis en fonction du pic d'activité: Si possible, évitez les semis dans les champs à risque lors du pic d'activité de la mouche. Lorsque des modèles prédictifs basés sur les degrés jours existent, leur utilisation s'avère utile pour éviter de semer pendant les dates de fortes abondances du ravageur.
- Densité de semis : Une densité de semis plus élevée permettrait de compenser jusqu'à un certain point les pertes pouvant être causées par la mouche des semis.
- Semis direct : Les dommages causés par la mouche des semis se produisent rarement dans les champs en semis direct.

4.2 Ravageurs secondaires : facteurs de risque, prévention et méthodes de lutte alternatives

Cette section présente les facteurs de risque favorisant la présence et l'abondance des ravageurs secondaires des semis de maïs et de soya. Elle présente aussi les moyens de prévention et les méthodes de lutte alternatives. Les problèmes liés à ces ravageurs sont peu fréquents (Labrie et coll., 2020).

4.2.1 Vers blancs

Les vers blancs incluent des larves de hanneton européen, hanneton commun et scarabée japonais. Ils se nourrissent de racines et peuvent couper les plants.

Facteurs de risque

• Historique d'infestations : Les champs ayant déjà connu une infestation par les vers blancs sont plus à risque de subir d'autres infestations.

- Précédent cultural : Les champs avec précédent de prairies ou ayant été infestés de mauvaises herbes sont à surveiller.
- Type de sol : Les sols légers avec une humidité modérée favorisent la survie des larves et sont donc plus à risque.

Prévention et méthodes de lutte alternatives

- Éviter de semer des cultures sensibles (ex. : maïs, céréales, prairies de graminée) dans les champs à risque et éviter les semis hâtifs, surtout en conditions fraîches et humides qui retardent la levée.
- Un travail de sol, tel qu'un labour, expose les larves aux prédateurs (ex. : oiseaux, moufettes, ratons laveurs).
- Il n'y a actuellement aucun seuil économique d'intervention pour les vers blancs au Québec, mais l'ampleur de la problématique selon l'historique d'infestations dans un champ permet d'établir la bonne stratégie d'intervention pour l'année suivante. En Ontario (Baute et coll., 2014), le seuil d'intervention est de 2 larves et plus par pied carré (30 cm²).

4.2.2 Ver-gris noir

Les papillons du ver-gris noir (VGN) arrivent des États-Unis au début du printemps. Leurs larves (chenilles) peuvent couper les plants de maïs jusqu'au stade 5 feuilles. Il est difficile de prévoir quand et où ont lieu les infestations. Le RAP Grandes cultures émet des prévisions de dates de coupe et détermine le moment propice au dépistage.

Facteurs de risque

- Mauvaises herbes et résidus de culture: Les champs ayant eu une forte abondance de mauvaises herbes au début du printemps (2 à 3 semaines avant le semis) ou ayant des résidus de culture (soya ou graminées fourragères) sont plus susceptibles de subir des dommages. La ponte a lieu dans la végétation dense, au ras du sol et habituellement avant le travail du sol au printemps. Même si le maïs est la principale culture affectée, les larves semblent préférer s'alimenter sur les mauvaises herbes. Lorsque le désherbage est fait tardivement, les larves migrent vers le maïs et les dommages à la culture apparaissent si le maïs est encore au stade vulnérable (1 à 5 feuilles).
- Les semis tardifs : Au Québec, on estime que le maïs qui a pu être semé dans les dates de semis recommandées parvient généralement au stade « 6 feuilles », bien avant que les larves ne soient assez développées pour couper les plants. Les semis

tardifs sont plus à risque. À partir du stade « 6 feuilles », le point de croissance du maïs est sorti du sol et la larve ne peut plus causer des pertes de rendement.

 Historique d'infestations: Les champs ayant déjà connu une infestation par le VGN sont plus à risque de subir d'autres infestations.

Prévention et méthodes de lutte alternatives

- Destruction des mauvaises herbes au moins 2 semaines avant le semis, pour réduire l'attractivité des VGN.
- Dépistage des champs à risque lorsque le maïs est au stade vulnérable pour déterminer si le seuil économique d'intervention est atteint et si un traitement insecticide foliaire en postlevée est justifié.
- Certains hybrides Bt sont homologués contre le VGN. Cette méthode de lutte protège les plants seulement contre les premiers stades larvaires. Des dommages peuvent être observés même dans des champs ensemencés de maïs Bt ciblant le VGN.

4.2.3 Chrysomèles des racines du maïs

Bien que l'utilisation de certains SEI pour lutter contre certaines espèces de chrysomèles des racines du maïs ait déjà été homologuée dans le maïs de grandes cultures, il ne s'agit souvent pas de la méthode de lutte la plus efficace contre ce ravageur. De plus, au moment de publier ce document, aucun TSI n'était homologué spécifiquement pour ces insectes. L'agronome devra donc privilégier les méthodes de lutte alternatives, comme l'optimisation de la rotation de culture ou encore l'utilisation d'hybrides Bt-chrysomèles.

4.3 Récapitulatif des principaux facteurs de risque des ravageurs des semis de maïs de grandes cultures et de soya

Le tableau suivant vise à présenter les informations contenues dans les sections 4.1.1 à 4.2.3 sur les facteurs de risque des principaux ravageurs des semis. Il est recommandé de mettre régulièrement à jour ses connaissances en consultant des références récentes, car ces informations pourraient évoluer. À noter que le RAP Grandes Cultures est une référence qui est mise à jour sur une base régulière.

Tableau 1. Récapitulatif des principaux facteurs de risques des ravageurs des semis du maïs de grandes cultures et du soya

Ravageurs des semis	Section	Historique d'infestation	Région agricole	Type de sol	Taux de matière organique	Précédents culturaux	Amendement organique	Travail de sol	Abondance des résidus	Conditions de semis et de levée	Période de semis	Mauvaises herbes
Principaux ravageurs	3											
Vers fil-de-fer	4.1.1	Х	Х	Х	Х	Х				Х		
Mouche des semis	4.1.2	Х	Х				Χ	Х	Х	Х	Х	
Ravageurs secondaires												
Vers blanc	4.2.1	Х		Х		Х						
Vers gris-noir	4.2.2	Х				Х			Х		Х	Х
Chrysomèles des racines de maïs*	4.2.3	х		Х		Х					Х	

^{*} Au moment de publier ce document, aucun TSI n'était homologué spécifiquement pour la chrysomèle des racines du maïs.

5 Impacts des pertes de population dans le maïs et le soya

Selon la culture, le ravageur et l'ampleur des dommages, les impacts sur les rendements sont très variables.

Impact sur les rendements

Rappelons que toutes les cultures peuvent montrer un certain degré de résilience face à des situations adverses. Une perte de population peut être uniforme dans tout le champ ou localisée dans une partie du champ. Dans le cas d'une perte de population uniforme, les plants adjacents peuvent, dans une certaine mesure, compenser. Dans le cas d'une perte de population localisée, la baisse de rendement dans ces zones sera plus importante. De plus, les retards de croissance de certains plants peuvent engendrer des baisses de rendements.

<u>L'annexe 1</u> présente certains résultats expérimentaux concernant les impacts sur les rendements des pertes de population pour les cultures de soya et de maïs. Ceux-ci sont présentés à titre indicatif afin de soutenir la démarche de l'agronome. **Dans le cadre d'une justification agronomique menant à l'utilisation d'une SEI, il revient à l'agronome d'établir le seuil de dommage anticipé à la culture qu'il juge pertinent afin de justifier une recommandation.**

Facteurs affectant la levée de la culture

Plusieurs facteurs autres que les insectes peuvent causer des pertes de population dans le maïs et le soya, notamment :

- Humidité du sol dans la zone de semis : Il s'agit de la cause la plus commune de la variabilité de la levée des cultures. Les différences d'humidité du sol dans la zone de semis sont causées principalement par les variations de type de sol, la topographie, l'inégalité du travail du sol, la profondeur de semis, la présence de résidus, un mauvais contact sol-semence, etc.
- La température de sol dans la zone de semis : Le type de sol et les résidus de culture mal distribués peuvent faire varier la température du sol et retarder l'atteinte de la température critique de germination.
- Autres facteurs: Le croûtage des sols, les dommages d'herbicides, la fonte des semis, certains insectes de sol, etc.; peuvent occasionner des pertes de population.

Outils et références pour évaluer des problématiques d'émergence

Voici quelques outils et références pertinents pour aider à évaluer des problématiques d'émergence :

- L'outil « Logiciel d'évaluation de la qualité des semis de maïs » élaboré par le club conseil en agroenvironnement Gestrie-sol, peut s'avérer utile pour consigner les causes d'une mauvaise levée ou d'une perte de population. Les coordonnées de Gestrie-sol sont disponible sur <u>le site web</u> de ce club conseil en agroenvironnement.
- Le <u>webinaire du MAPAQ</u> intitulé « Maïs et soya : évaluation de la levée et diagnostic des causes de mauvaise levée »

6 Utilisation des SEI

Les SEI doivent être utilisées en dernier recours. Il est de la responsabilité de l'agronome de démontrer leur nécessité, notamment en basant ses recommandations sur les connaissances et données acquises sur l'entreprise agricole.

Lors de la prise en charge du mandat d'évaluation des risques liés aux ravageurs des semis sur une entreprise, l'agronome devra valider les informations disponibles, s'il y a lieu, et entamer une démarche agronomique d'acquisition de connaissances. L'acquisition de données concrètes sur l'entreprise pouvant s'étaler sur une certaine période, l'agronome peut se baser sur un ou plusieurs des critères détaillés à <u>la section 6.1</u> afin de justifier l'utilisation de SEI.

Bien que l'ensemble du travail de l'agronome menant à la recommandation de l'utilisation de SEI doit être documenté au dossier, seuls <u>les éléments justificatifs (6.1)</u> et <u>la démarche d'acquisition de connaissances (6.2)</u> sont à détailler sur la justification agronomique.

Tenue de dossier, recommandation en phytoprotection, justification et prescription agronomique

Rappelons que l'agronome doit tenir un dossier pour chacun de ses mandats. L'article 3 du Règlement sur les dossiers, les bureaux et la cessation d'exercice des agronomes énonce les éléments essentiels devant figurer dans un dossier. Voici quelques points saillants de cet article en lien avec le présent document :

- 3° la description du mandat comprenant les objectifs visés et les étapes de leur réalisation et, le cas échéant, toute modification ou clarification apportée à celui-ci ;
- 7° le dossier technique, les documents, les pièces et les renseignements relatifs aux services professionnels rendus comprenant les données fournies par le client ou colligées par l'agronome ou une autre personne;
- 8° la copie de tout rapport, avis ou autre document produit ou remis au client de même que toute recommandation qui lui est faite ;
- 10° la copie de toute justification agronomique et de toute prescription agronomique visées aux articles 74.1 à 74.4 du Code de gestion des pesticides.

Un dossier complet contiendra donc bien plus que la justification et prescription agronomique. En particulier, toutes les données utilisées pour étayer la recommandation doivent figurer au dossier, même si elles ne sont pas nécessairement présentées dans la justification elle-même. Cette dernière devrait plutôt fournir un résumé des principaux éléments ayant conduit à la recommandation d'utiliser des SEI.

Rappelons qu'une recommandions d'utiliser des SEI est une recommandation en phytoprotection. La Grille de référence de l'Ordre des agronomes du Québec sur l'élaboration d'un plan de phytoprotection ou d'une recommandation ponctuelle présente les grandes étapes de la recommandation en phytoprotection. En guise de rappel, la recommandation en phytoprotection commence par l'identification des besoins et des objectifs spécifiques de l'entreprise agricole.

Ensuite, une analyse de l'historique des données de l'entreprise est réalisée. Cette étape est suivie par un diagnostic phytosanitaire des parcelles concernées. Sur cette base, une analyse des options d'intervention est effectuée en accord avec les principes de la GIEC. De plus, un diagnostic environnemental est réalisé. Enfin, une recommandation finale est formulée. Une justification et une prescription agronomiques sont émises, le cas échéant. Puis, un suivi de la recommandation est assuré pour évaluer l'efficacité des mesures recommandées et apporter des ajustements si nécessaire.

De plus, il est important de noter qu'une recommandation de ne pas utiliser de traitement insecticide constitue également une recommandation. Dans ce cas, aucune justification agronomique n'est requise, mais les éléments soutenant cette recommandation doivent tout de même être détaillés au dossier.

Enfin, rappelons qu'un des objectifs fondamentaux de la tenue de dossier des agronomes est de pouvoir justifier la validité des recommandations en cas de litige.

6.1 Éléments justificatifs

Certaines données recueillies sur l'entreprise peuvent servir à valider la pression exercée par les ravageurs des semis et ainsi dresser un **historique de pression et de dommages** aux cultures. Cette documentation des populations de ravageurs et des effets de leur prédation à l'échelle de la parcelle ou d'un groupe de parcelles constitue le critère pouvant démontrer le caractère de dernier recours d'une SEI.

6.1.1 Les éléments justificatifs documentés sur l'entreprise

Afin d'acquérir les connaissances menant à la documentation de l'historique de pression et de dommages, plusieurs méthodes peuvent être employées par l'agronome.

6.1.1.1 Dépistage des VFF (pièges-appâts)

Le dépistage des VFF par pièges-appâts demeure la seule méthode au Québec permettant de déterminer si les populations de VFF présentes dans un champ atteignent ou non les seuils économiques d'intervention reconnus. Les méthodes reconnues doivent être suivies pour assurer la validité des résultats obtenus. Voici quelques références pertinentes :

- <u>Dépistage des vers fil-de-fer</u> (CÉROM, 2021) (méthode régulière et complète)
- Méthode allégée de dépistage des vers fil-de-fer (VFF) par pièges-appâts (RAP, 2024)

6.1.1.2 Évaluation de la levée de la culture

Le suivi de la levée des cultures permet de constater l'état des populations et du développement des plantules. <u>La section 5</u> traite de certains éléments à considérer lors d'une telle évaluation.

Dans le cas d'une démarche d'acquisition de connaissances sur les problématiques liées aux ravageurs des semis, l'agronome devra minimalement détailler au dossier les éléments suivants :

- Identification du ou des ravageurs
- Dommages observés (ex : prédation légère sans impact, retard de croissance, mort des plants, etc.)
- Ampleur des dommages observés en lien avec la prédation (ex : nombre de plants morts ou en retard de croissance par zone définie, % de plants affectés, etc.)

Rappelons qu'il revient à l'agronome d'établir le seuil de dommage anticipé à la culture qu'il juge pertinent afin de justifier l'utilisation de SEI.

6.1.1.3 Autres observations

Toutes les données acquises par le biais d'observations sur l'entreprise peuvent servir à bâtir un historique de pression liée aux populations de ravageurs (ex : dépistage des VFF par pièges-appâts) ou de dommages causés par ceux-ci (ex : % de plants affectés, etc.).

L'agronome peut dresser un historique sur la base d'autres méthodes d'observation, incluant notamment les essais de type côte à côte avec et sans enrobage insecticide. Toutefois, il est important de tenir compte de la méthodologie observée et de la fiabilité des résultats.

Par exemple, dans le cas des essais de type côte à côte, la seule différence de rendement observée entre une bande traitée ou non traitée avec un insecticide de semence ne pourrait justifier l'utilisation de SEI puisque plusieurs variables peuvent entrer en ligne de compte. Le diagnostic des dommages aux plantules dans les deux traitements pourrait toutefois servir d'élément justificatif.

Validation périodique

L'agronome devra aussi s'assurer de valider périodiquement que les observations passées demeurent pertinentes, particulièrement dans le cas des VFF, pour lesquels les populations peuvent varier au fil des années.

6.1.2 Autres éléments justificatifs transitoires

Durant la démarche d'acquisition de connaissances sur l'entreprise, les éléments suivants peuvent être utilisés afin de justifier l'utilisation de SEI.

6.1.2.1 Outil VFF QC

VFF QC est un outil d'aide à la décision qui contient plusieurs modules, notamment l'évaluation du niveau de risque lié aux VFF dans un champ. Il est basé sur les données collectées dans environ 1000 champs à travers la province. Il prend en compte des

combinaisons de facteurs (type de sol, pourcentage de matière organique, culture de la saison en cours et des trois années précédentes, etc.). Un modèle mathématique prévisionnel calcule le niveau de risque pour l'espèce de VFF la plus fréquemment observée en grandes cultures au Québec, *Hypnoidus abbreviatus*:

- Le champ présente un **risque faible** lorsque l'outil prédit une population de VFF moyenne de 0 à 1,5 VFF/piège/relevé, soit de 0 et 15 *Hypnoidus abbreviatus* collectés dans 10 pièges-appâts.
- Le champ présente un **risque modéré** si on trouve en moyenne lorsque l'outil prédit une population de VFF moyenne de 1,6 à 2,9 VFF/piège/relevé, soit entre 16 et 29 *Hypnoidus abbreviatus* collectés dans 10 pièges-appâts.
- Le champ présente un **risque élevé** lorsque l'outil prédit une population de VFF moyenne de 3,0 VFF/piège/relevé et plus, soit plus de 30 *Hypnoidus abbreviatus* collectés dans 10 pièges-appâts.

Mise en garde

Il est normal que, dans une grande majorité des cas, le niveau de risque apparaisse comme « faible » puisque 90 à 95 % des champs étudiés au Québec n'atteignent pas les seuils économiques d'intervention (Labrie et al. 2020).

Le modèle utilisé par l'outil VFF QC est d'une grande fiabilité de prédiction pour l'espèce majoritaire au Québec, *Hypnoidus abbreviatus*. Le modèle n'étant pas basé sur les espèces appartenant aux genres plus dommageables, mais moins présents au Québec, tels qu'*Agriotes*, *Limonius* et *Melanotus*, il peut être moins fiable dans certains cas. En effet, pour ces genres, le seuil économique d'intervention est de 1 VFF/piège/semaine en moyenne. Par exemple, si le nombre moyen de VFF est de 1,3/piège/semaine, le modèle prédit un risque faible. Si l'espèce majoritaire est *Hypnoidus abbreviatus*, dans ce cas le modèle prédit correctement. Si l'espèce majoritaire appartient au genre *Agriotes*, dans ce cas le modèle ne prédit pas correctement, il devrait prédire un risque élevé.

De plus, le modèle prédit moins bien le risque lorsque les champs ne sont qu'occasionnellement infestés.

Transmettre des données de dépistage pour alimenter la base de données de VFF QC

VFF QC est également utile pour saisir et compiler des données de dépistage et ainsi bâtir l'historique d'un champ et d'une exploitation agricole. La saisie de données de dépistage dans VFF QC permet aussi de continuer à alimenter la base de données pour renforcer la fiabilité de l'outil. Il est vivement encouragé de transmettre les données de dépistage collectées avec la méthode de dépistage régulière. Les données collectées avec la

méthode allégée ne pourront pas être prises en compte. Il est également suggéré de faire parvenir des données de dépistage pour les champs dans lesquels les dépisteurs constatent que le nombre de VFF est élevé ou différent de la prédiction du modèle, que les populations de VFF soient faibles ou abondantes. Avant de transmettre les données de dépistage et autres informations connexes, l'agronome doit s'assurer d'avoir préalablement obtenu l'autorisation du propriétaire de l'entreprise, en utilisant le formulaire disponible.

6.1.2.2 Facteurs de risque

<u>La section 4</u> de ce document expose les principaux facteurs de risque connus à ce jour pour les ravageurs des semis.

Rappelons toutefois que la présence de facteur(s) de risque n'entraîne pas nécessairement la présence de ravageurs des semis et encore moins de populations atteignant un seuil économique d'intervention.

6.1.2.3 Indications de l'entreprise agricole

Le producteur ou la productrice agricole peut travailler avec l'agronome dans sa démarche d'acquisition de connaissance sur les ravageurs des semis au sein de l'entreprise.

Toutefois, les indications de l'exploitant doivent faire l'objet de validations de la part de l'agronome. En l'absence de données documentées (ex : rapport effectué dans le cadre d'une réclamation d'assurance à la suite d'une infestation importante de VFF), l'agronome devra travailler à bâtir un historique de données sur l'entreprise.

6.1.3 Éléments justificatifs qui ne sont pas basés sur la gestion des ravageurs des semis

Les situations décrites dans cette section peuvent être ciblées par l'obligation réglementaire de compléter une recommandation agronomique. Toutefois, dans ces cas, aucune autre démarche agronomique d'acquisition de connaissances n'est associée à l'utilisation de SEI, car il ne s'agit pas d'une recommandation en phytoprotection visant les ravageurs des semis. Une courte contextualisation de la situation servira à compléter le dossier.

6.1.3.1 Recherche et transfert technologique

En contexte de recherche ou de transfert technologique, les essais d'hybrides ou de cultivars impliquent souvent l'utilisation de semences provenant de lignées produites en petites quantités, généralement traitées avec des insecticides. Certains projets de recherche peuvent également évaluer l'efficacité de ces traitements insecticides sur les semences ou nécessiter l'utilisation de tels pesticides pour des raisons liées à leur protocole expérimental.

Dans de telles situations, où il n'y a pas de vente de semences, une prescription agronomique n'est pas nécessaire. Cependant, conformément à la réglementation québécoise sur les pesticides, un agronome doit recommander la mise en terre de ces semences, qu'il y ait ou non vente. L'agronome doit fournir les renseignements requis comme stipulé dans la présente ligne directrice. Il convient de noter que dans le contexte spécifique de recherche et de transfert technologique, certaines définitions et réponses aux renseignements attendus peuvent différer de celles d'une situation régulière.

L'Ordre a produit un modèle de justification agronomique applicable aux projets de recherche ou de transfert technologique. Ce modèle est disponible dans la section Membres/Documents de référence du site web de l'Ordre.

6.1.3.2 Autres situations

Certaines situations ne permettent pas l'utilisation de SEI, souvent par manque de disponibilité en lien avec le petit volume disponible sur le marché. Bien que la prochaine section ne soit pas exhaustive, voici quelques situations pour lesquelles une prescription et une justification agronomique devront être complétées, mais sans devoir démontrer le caractère de dernier recours de la SEI:

- Essais de nouvelles variétés commerciales disponibles en faibles quantités (superficies inférieures à 5 ha).
- Culture de soya, destinée à la production de semences certifiées, dont le lot de semence serait enrobé d'un insecticide par défaut.
- Avantages agronomiques spécifiques démontrés par l'agronome (ex : maïs BMR à faible lignine, maïs Bt-chrysomèle dont la nécessité de l'utilisation sur l'entreprise visée est démontrée par l'agronome).
- Parcelles d'essais dans le cadre de recherche appliquée à la ferme (superficies inférieures à 5 ha).

Quelques situations qui ne doivent PAS être considérées comme un élément justificatif :

- Souhait unique du client de maintenir l'utilisation de SEI, à titre de « police d'assurance » par exemple.
- Justification de l'utilisation d'un TSI sur la seule base de son homologation dans une culture donnée.
- Toute situation mettant l'intérêt de vente devant le besoin réel de SEI.

Tableau 2. Résumé des éléments justificatifs acceptés

Type d'élément justificatif	Documentés sur l'entreprise	Transitoires	Non basés sur la gestion des ravageurs des semis
Description	Éléments démontrant le caractère de dernier recours d'une SEI.	Éléments pouvant justifier l'utilisation de SEI au cours de démarche d'acquisition de connaissances.	Éléments ne visant pas les ravageurs des semis, mais pouvant justifier l'utilisation de SEI.
Éléments justificatifs acceptés	 Dépistage des VFF (pièges- appâts) (6.1.1.1) Évaluation de la levée de la culture (6.1.1.2) Autres observations (6.1.1.3) 	 Outil VFF QC (6.1.2.1) Facteurs de risque (6.1.2.2) Indications de l'entreprise agricole (6.1.2.3) 	 Recherche et transfert technologique (6.1.3.1) Autres situations (6.1.3.2)

6.2 Démarche d'acquisition de connaissances

L'agronome qui recommande l'utilisation de SEI doit démontrer son caractère de dernier recours. Pour ce faire, il ou elle devra documenter les dommages réels causés par un ou des ravageurs des semis ou encore les populations présentes dans une parcelle donnée afin de justifier l'utilisation subséquente d'un traitement préventif.

La documentation de ces données est une démarche progressive. L'agronome devra donc établir une démarche d'acquisition de connaissances qui peut prendre quelques années sur l'entreprise à partir de la prise en charge du mandat d'évaluation des risques liés aux ravageurs des semis. Durant cette démarche, les autres éléments justificatifs transitoires (section 6.1.2) peuvent être utilisés pour justifier l'utilisation de SEI si l'agronome le juge nécessaire.

6.2.1 Acquisition de connaissances sur l'entreprise

Lors de l'émission d'une justification agronomique basée sur des critères qui n'ont pas fait l'objet de validation au champ (ex : facteurs de risques, outil VFF QC), l'agronome doit établir les moyens qu'il mettra en œuvre afin de valider le risque réel que représente les ravageurs des semis sur l'entreprise. Il ou elle détaillera donc les moyens (ex : suivi de la levée documentée) et les superficies minimales visées (ex : nombre d'hectares, numéros de champs) qui feront l'objet de sa démarche pour les deux années subséquentes.

Le schéma suivant illustre le déroulement fictif d'une démarche d'acquisition de connaissances dès l'année 1, soit l'année de l'établissement du mandat.

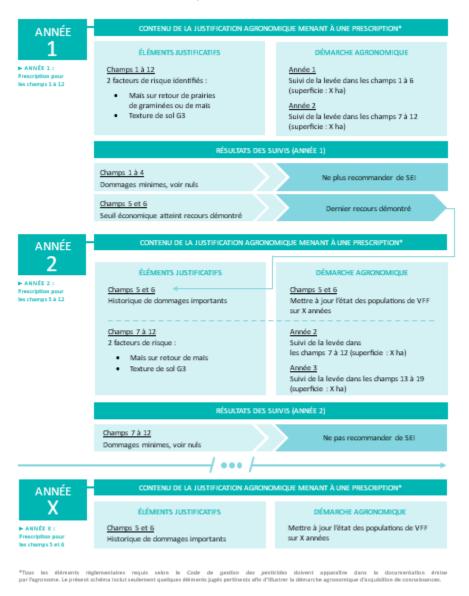


Figure 1. Schéma d'un exemple illustrant une justification agronome intégrant une démarche agronomique visant l'acquisition de connaissances sur plusieurs années.

6.2.2 Rétroaction et validité

Comme illustré dans le schéma ci-dessus, les données recueillies dans le cadre de la démarche d'acquisition de connaissances doivent être considérées pour les recommandations subséquentes. Dans le cas contraire, l'agronome devra justifier la raison du refus de les considérer.

Lorsque la totalité des superficies visées par la justification agronomique a fait l'objet de validation et que l'agronome démontre le caractère de dernier recours de SEI, il ou elle n'a plus à soumettre une démarche agronomique d'acquisition de connaissances. Toutefois, il faut s'assurer que les données recueillies demeurent pertinentes dans le temps. Dans le cas des VFF, une validation périodique prévue par l'agronome de l'état des populations ou des dommages causés par ces ravageurs est à prévoir. Par exemple, un dépistage par pièges-appâts aux 5 ans ou un essai de type côte à côte avec des semences traitées et nontraitées avec suivi des dommages causés par les ravageurs des semis pourraient permettre de valider la pertinence du maintien de l'utilisation des SEI dans une parcelle ayant un historique de dommages importants causés par les VFF.

Certaines situations demanderont aussi une réévaluation du risque lié aux ravageurs des semis et de la démarche agronomique d'acquisition de connaissances en découlant. Un changement important dans la régie de culture d'un client ou le transfert d'un dossier de la part d'un confrère ou d'une consœur pourraient par exemple y mener. L'agronome serait alors justifié de revoir la pertinence des données acquises préalablement afin de proposer une démarche qu'il ou elle juge mieux adaptée.

Finalement, toute modification aux objectifs d'acquisition de connaissance établis lors de la rédaction d'une justification agronomique devra faire l'objet d'une note au dossier, expliquant notamment les raisons de ce changement et l'ajustement proposé.

Références bibliographiques

- Alford, A., & Krupke, C.H. (2017). Translocation of the neonicotinoid seed treatment clothianidin in maize. PLoS One, 12(3), e0173836.
- Barlow, C.A. (1965). Stimulation of oviposition in the seed-corn maggot fly, Hylema cilicrura (Rond.) (Diptera:Anthomyiidae). Entomol. Exp. Appl. 8, 83–95. [CrossRef]
- Baute, T., Smith, J., & Quesnel, G. (2014). Guide to early season field crop pests.
- CÉROM. (2024). Dépistage des vers fil-de-fer (vs 18-iv-2024). Récupéré sur https://cerom.qc.ca/vffqc/documents/D%C3%A9pistage%20des%20vers%20fil-de-fer%20(vs%2018-iv-2024).pdf
- Cherry, R., Taylor, J., Sherrod, D., & Karounos, M. (2017). Corn Seed Treatments for Control of the Corn Wireworm (Coleoptera: Elateridae). Journal of Entomological Science, 52(2), 161–168. doi: https://doi.org/10.18474/JES16-20.1
- Chrétien, F., Giroux, I., Thériault, G., Gagnon, P., & Corriveau, J. (2017). Surface runoff and subsurface tile drain losses of neonicotinoids and companion herbicides at edge-of-field. Environmental Pollution, 224, 255-264. doi: 10.1016/j.envpol.2017.02.002
- Gregory, W. W., & Musick, G. J. (1976). Insect management in reduced tillage systems. Bulletin of the ESA, 22(3), 302-304.
- Grewal, P.S., Power, K.T., & Shetlar, D.J. (2001). Neonicotinoid insecticides alter diapause behavior and survival of overwintering white grubs (Coleoptera: Scarabaeidae). Pest Management Science, 57, 852-857.
- Groupe de travail sur les ravageurs des semis du RAP Grandes cultures. (2024, 26 avril).

 Méthode allégée de dépistage des vers fil-de-fer (VFF) par pièges-appâts [Fiche technique du réseau d'avertissement phytosanitaire (RAP) Grandes cultures].

 (MAPAQ). Récupéré sur

 https://www.agrireseau.net/documents/Document_112933.pdf
- Hummell, J.D., Dosdall, L.M., Clayton, G.W., Harker, K.N., & O'Donovan, J.T. (2009). Effects of canola-wheat intercrops on Delia spp. (Diptera: Anthomyiidae) oviposition, larval feeding damage, and adult abundance. Journal of Economic Entomology, 102, 219-228.
- Labrie, G., Saguez, J., & Latraverse, A. (2017). Élaboration et validation d'un arbre de décisionnel pour l'utilisation de semences traitées aux néonicotinoïdes contre les vers fil-de-fer dans le maïs. Projet Prime-Vert PV-3.2-2015-002. Récupéré sur

- https://www.mapaq.gouv.qc.ca/SiteCollectionDocuments/Agroenvironnement/PV-3.2-2015-002_Rapport.pdf
- Labrie, G., Gagnon, A.E.G., Vanasse, A., Latraverse, A., & Tremblay, G. (2020). Impact of neonicotinoid seed treatments on soil-dwelling pest populations and agronomic parameters in corn and soybean in Quebec (Canada). PLoS ONE, 15(2), e0229136. https://doi.org/10.1371/journal.pone.0229136
- Liu, W., Tollenaar, M., Stewart, G., & Deen, W. (2004). Response of corn grain yield to spatial and temporal variability in emergence. Crop Science, 44.
- Ministère de l'Agriculture, de l'Alimentation et des Affaires rurales de l'Ontario. (2017).

 Guide agronomique des grandes cultures (Publication n° 811F). Publication disponible sur le site web du ministère de l'Agriculture, de l'Alimentation et des Affaires rurales de l'Ontario : https://www.ontario.ca/fr/page/publication-811f-guideagronomique-des-grandes-cultures
- Nafziger, E. D. (1994). Corn planting date and plant population. Journal of Production Agriculture, 7(1), 59-62.
- Saguez, J., & Collaborateurs. (2017). Guide d'identification des VFF dans les grandes cultures au Québec. Centre de recherche sur les grains, page 12.
- Schaafsma, A., Limay-Rios, V., & Forero, L.G. (2017). The role of field dust in pesticide drift when pesticide-treated maize seeds are planted with vacuum-type planters. Pest Management Science, 74(2). DOI 10.1002/ps.4696.
- Schaafsma, A., Limay-Rios, V., Baute, T., & Smith, J. (2019). Neonicotinoid insecticide residues in subsurface drainage and open ditch water around maize fields in southwestern Ontario. PLoS One, 14(4), e0214787. doi: 10.1371/journal.pone.0214787
- Schaafsma, A., Limay-Rios, V., Baute, T., Smith, J., & Xue, Y. (2015). Neonicotinoid insecticide residues in surface water and soil associated with commercial maize (corn) fields in Southwestern Ontario. PLoS One, 10(2), e0118139.
- Schaafsma, A., Limay-Rios, V., Xue, Y., Smith, J., & Baute, T. (2016). Field-scale examination of neonicotinoid insecticide persistence in soil as a result of seed treatment use in commercial maize (corn) fields in southwestern Ontario. Environmental Toxicology and Chemistry, 35(2), 295–302.
- Schaafsma, M., Hirons, M.A., & Utila, H. (2018). Understanding trade-offs in upscaling and integrating climate-smart agriculture and sustainable river basin management in Malawi. Environmental Science & Policy, 80, 117-124.

- Van Herk, W. G., Labun, T. J., & Vernon, R. S. (2018). Efficacy of diamide, neonicotinoid, pyrethroid, and phenyl pyrazole insecticide seed treatments for controlling the sugar beet wireworm, Limonius californicus (Coleoptera: Elateridae), in spring wheat.

 Journal of the Entomological Society of British Columbia, 115, 86-100.
- Van Herk, W. G., Vernon, R. S., Clodius, M., Harding, C., & Tolman, J. H. (2007). Mortality of five wireworm species (Coleoptera: Elateridae), following topical application of clothianidin and chlorpyrifos. Journal of Entomological Society of British Columbia, 104, 55-63.
- Van Herk, W. G., Vernon, R. S., Tolman, J. H., & Ortiz Saavedra, H. (2008). Mortality of a wireworm, Agriotes obscurus (Coleoptera: Elateridae), following topical application of various insecticides. Journal of Economic Entomology, 101, 375-383.
- Vernon, R. S., van Herk, W. G., Clodius, M., & Harding, C. (2009). Wireworm Management I: Stand Protection Versus Wireworm Mortality With Wheat Seed Treatments. Journal of Economic Entomology, 102, 2126-2136.
- Vernon, R. S., van Herk, W., Tolman, H., Saavedra, O., Clodius, M., & Gage, B. (2008). Transitional sublethal and lethal effects of insecticides after dermal exposures to five economic species of wireworms (Coleoptera: Elateridae). Journal of Economic Entomology, 101, 365-374.

Annexe I - Impacts des pertes de population dans le soya et dans le maïs-grain et fourrager

Impacts des pertes de population dans le soya

« Les plants de soya ont une remarquable capacité de compensation dans les peuplements clairsemés. D'après des études effectuées en Ontario, une réduction de 33 % du peuplement, si elle est uniforme, n'a pas d'effet notable sur le rendement. ».²

Le tableau 2, provenant du *Guide agronomique des grandes cultures de l'Ontario*, illustre l'impact des pertes de population dans le soya. Dans ce tableau, on constate qu'une population initiale d'environ 400 000 plants/ha peut être réduite de 40 % sans impact sur le rendement et indépendamment de l'écartement des rangs.

Au Québec, plusieurs régions requièrent de semer du soya de maturité très hâtive (maturité relative « 000 » soit 2300 à 2400 unités thermiques de maïs [UTM]). Une perte de population dans ces zones sera plus difficile à compenser que dans une zone plus tardive, telle que 2600 UTM et plus. Dans les zones à plus faible UTM, la saison de croissance plus courte et les variétés utilisées n'offrent pas les mêmes possibilités physiologiques à la plante pour compenser une perte de population. De ce fait, les recommandations de taux de semis sont, la plupart du temps, adaptées en conséquence : le taux de semis sera plus élevé pour une variété hâtive.

Tableau 3. Rendement prévu des peuplements de soya optimaux et réduits

% par		Rendement			
rapport à un peuplement complet	18 cm (7 po)	36 cm (14 po)	53 cm (21 po)	76 cm (30 po)	final prévu en % du rendement optimal
100 %	553 300 plants/ha	402 600 plants/ha	392 700 plants/ha	405 100 plants/ha	100 %
80 %	442 100 plants/ha	323 600 plants/ha	313 700 plants/ha	323 600 plants/ha	100 %
60 %	331 000 plants/ha	242 100 plants/ha	237 100 plants/ha	244 500 plants/ha	100 %
40 %	222 300 plants/ha	160 600 plants/ha	158 100 plants/ha	163 000 plants/ha	87 %
20 %	111 200 plants/ha	81 500 plants/ha	79 000 plants/ha	81 500 plants/ha	62 %

Impacts des pertes de population dans le maïs-grain et fourrager

² Source : Tiré du Guide agronomique des grandes cultures, Publication 811F, MAAARO, 2017

Une étude réalisée en Illinois par Nafziguer (1994) démontre que pour un peuplement de 74 000 à 84 000 plants/ha, une réduction de 5000 plants/ha (environ 6 % du peuplement en moins) donne le même rendement. Vous pouvez consulter la fiche technique « Rendement du maïs-grain et densité de peuplement » pour plus de détails.

Le tableau 3, tiré de cette étude, donne la proportion du rendement optimal obtenu en pourcentage selon les dates de semis et les différentes densités de peuplement finales. Le rendement optimal est atteint avec des densités de semis variant entre 69 200 et 79 100 plants/ha.

Par exemple, pour un semis en date du 5 mai et une densité de semis de 74 100 plants/ha, une perte de population de 20 % (devenue 59 300 plants/ha) entraînerait une perte de rendement de trois (3) %.

Tableau 4. Rendements potentiels du maïs-grain selon différentes dates de semis et différentes densités finales de peuplement

	Densité de peuplement (x 1000 plants/ha)								
Date de	59,3	64,2	69,2	74,1	79,1	84,0	89,0		
semis	Pourcentage de peuplement optimal (%)								
30 avril	97	99	100	100	100	99	97		
5 mai	96	98	99	99	99	98	97		
10 mai	94	96	97	97	97	96	95		
15 mai	92	93	94	95	95	94	92		

Une autre étude menée par le Comité ontarien du maïs de 2006 à 2010 (MAAARO, 2017) donne des résultats semblables (tableau 4). Par exemple, pour le site Elora, pour une perte de peuplement de 16,6 % (74 100 plants/ha plutôt que 88 900 plants/ha), les rendements diminuent de trois (3) %. Pour une perte de population de 33,3 % (59 300 plants/ha plutôt que 88 900 plants/ha), les rendements diminuent de sept (7) %.

Tableau 5. Rendement en grain prévu selon les densités de peuplement

Densité de peuplement	Elora (<2800 utm)	Exeter (2800 à 3200 utm)	Ridgetown (> 3200 utm)
59 300 plants/ha	96	97	97
74 100 plants/ha	100	100	100
88 900 plants/ha	103	102	101

Les résultats de ces deux études démontrent clairement qu'une perte de population doit être substantielle, de l'ordre de 20 %, pour qu'elle engendre une perte de rendement significative. Toutefois, il faut considérer qu'il s'agit de populations uniformes (pertes non localisées). De plus, dans un champ, il est possible qu'un plant soit affecté sans nécessairement mourir. Il sera donc moins vigoureux et subira un retard de croissance. Un

plant de maïs en retard affecte plus le rendement que l'absence d'un plant. Le maïs peut compenser pour un plant manquant, mais il subira la compétition d'un plant en retard. Cependant, selon une étude ontarienne, il faudrait un plant sur six avec un retard de croissance de deux feuilles pour diminuer le rendement de quatre (4) % (Liu et coll., 2004).

En conclusion, quelle serait donc la perte de population acceptable pour le soya et le maïs ? Le soya compense beaucoup pour une perte de population en début de saison, pouvant subir des pertes de population allant jusqu'à 40 % sans perte de rendement. Il faut toutefois tenir compte de la population initiale et de la zone de maturité. Le maïs, quant à lui, peut subir des pertes de rendement selon le pourcentage de diminution du peuplement ou selon des retards de croissance d'une partie du peuplement. Selon les études, ces pertes peuvent aller de zéro (0) à sept (7) % selon le cas.